“REVIEW ON”’”METRICS FOR PERFORMANCE EVALUATION OF ROUTING ALGORITHM”

KAVERI V. TONGO
Department of Computer Science and Engineering,
Abha-Gaikwad Patil College of Engineering
Nagpur, India
kaveritongo@gmail.com

PRAGATI PATIL
Department of Computer Science and Engineering,
Abha-Gaikwad Patil College of Engineering
Nagpur, India
principal@agpce.com

ABSTRACT: Now a days uses of wireless sensor network has been increased but it has some limitations such as low battery power and memory, narrow channel, poor link quality and high packet loss rate. How to avoid noise and provide an efficient reliable data transmission is a challenge we are facing. Also wireless sensor networks could not balance the network load and also cannot achieve maximum the wireless link bandwidth. Also the challenge we are facing is how to precisely measure performance of routing algorithm when studying routing algorithm of network-on-chip (NoC). In this paper have to study the wireless sensor network and also presenting the routing matrices.

Keywords: data transmission, network-on-chip, packet loss rate, wireless sensor network

1. INTRODUCTION

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to monitor physical or environmental conditions. A WSN system incorporates a gateway that provides wireless connectivity back to the wired world and distributed nodes. The wireless protocol you select depends on your application requirements. A number of security issues exist in WSN and need to be analyzed in detail in order to design appropriate security mechanisms and overcome security problems that arise in the sensor environment. However, designing new security protocols and mechanisms is constrained by the capabilities of the sensor nodes.

2. LITERATURE SURVEY

R. Draves et. al. [3] presents a new metric for routing in multi-radio, multihop wireless networks. We focus on wireless networks with stationary nodes, such as community wireless networks. Aim of author is metric to choose a high-throughput path between a source and a destination. Our metric assigns weights to individual links based on the Expected Transmission Time (ETT) of a packet over the link. The ETT is a function of the loss rate and the bandwidth of the link. The individual link weights are combined into a path metric called Weighted Cumulative ETT (WCETT) that explicitly accounts for the interference among links that use the same channel. The WCETT metric is incorporated into a routing protocol that we call Multi-Radio Link-Quality Source Routing.

A. Agarwal et. al. [4] suggests a routing protocol wherein the route selection is done on the basis of an intelligent residual lifetime
assessment of the candidate routes. Schemes for performance enhancement with TCP and non-TCP traffic in Ad-hoc networks are proposed. The protocol is backed by simulations in N that show excellent adaptation to increasing network mobility. Author also introduced new route cache management and power aware data transmission schemes.

S. Singh et. al. [6] developed Geographic Random Forwarding (GeRaF) for Adhoc and sensor networks. It considers a novel forwarding technique based on geographical location of sensor nodes and random selection of relaying nodes via contention among receivers. A unique collision avoidance scheme is proposed and analyzed with respect to latency and energy performance. It is found that these parameters are better for smaller node density. But selection of realistic channels is required for accurate results.

D. Kim et. al. [7] provides a greedy localized routing for maximizing probability of packet delivery in wireless adhoc networks with a realistic physical layer. The localized routing minimizes energy and communication cost required to build and manage the global topological information. This protocol concentrates on hop-by-hop fixed packet delivery, but it is unable to handle variable length packets with end-to-end routing.

Y. Yang et. al. [8] developed a reliable reactive routing enhancement (R3E) to increase reliability and energy efficiency in packet delivery process links in unreliable links. This protocol is designed with biased back-backup scheme for route discovery that can find better paths with large co-operative forwarding opportunities. This path facilitates the packets to transmit towards the destination without requirement of location information, but comparatively it requires more energy cost towards co-operative forwarding.

3. ROUTING METRICS

The existing routing metrics are classified into six categories based on their operation. Topology based, Hop count, Signal strength based, Active probing based, Mobility aware and Energy aware metrics. [4]

3.1. Topology Based
In this technique the topological information of the network will be considered i.e. the number of neighbors of each node, number of hops and/or paths towards a particular destination. The metrics always consider connectivity information which is available locally by the routing protocol, without requiring additional passive or active measurements. The topology-based metrics do not take into account several variables that have an impact on both the network and application performance, such as the transmit rates of the links are popular due to their simplicity.[11]

3.2 Hop count
In this metric, every link counts as one equal unit independent of the quality or other characteristics of the link and very simple technique. The ease of implementation has made hop count the most widely used metric in wired networks and it is the default metric in many wireless sensor networks routing protocols, such as OLSR [8], DSR [9], DSDV [10] and AODV [11]. Fewer hops on the data path produce smaller delay, whether these involve network links or buffers or computational power. The implicit assumption is the existence of error-free
links. On the contrary, links in wireless sensor networks cannot be assumed error-free.

3.3. Signal Strength Based Metrics
Signal strength metric has been used as link quality metrics in several routing protocols for wireless sensor networks. The signal strength can be viewed as a good indicator for measuring link quality since a packet can be transferred successfully when the signal strength is more than the threshold value.

3.4. Active Probing Based Metrics
To overcome the drawbacks of topology based metrics various authors have proposed active probing metrics to carry out active measurements and use probe packets to directly estimate those probabilities. Probing Technique had various challenges such as packet sizes of probes in the network should be equal to the data so that what probes measure is as close to the target as possible and probe packets should not give any priority in the network. The probing based metrics have proved promising in the context of wireless sensor networks. They measure directly the quantity of interest, rather than inferring it from indirect measurements, and do not rely on analytical assumptions. Per-hop Round Trip Time (RTT) The per-hop Round-Trip Time (RTT) metric is based on the bidirectional delay on a link [12]. In order to measure the RTT, a probe packet is sent periodically to each neighboring node with time stamp. Then each neighbor node returns the probe immediately. This probe response enables the sending node to calculate the RTT value. The path RTT metric is the summation of all links RTT in the route. The RTT metric is dependent on the network traffic. Since it comprises queuing, channel contention, as well as 802.11 MAC retransmission delays. Per-hop packet pair delay (PktPair) This delay technique is designed to overcome the problem of distortion of RTT measurements due to queuing delays and it consists periodic transmission of two probe packets with different sizes back-to-back from each node. The neighbor node calculates the inter-probe arrival delay and reports it back to the sender. This metric is less susceptible to self-interference than the RTT metric, but it is not completely immune, as probe packets in multi-hop scenario contend for the wireless channel with data packets. Both the RTT and PktPair metrics measure delay directly, hence they are load-dependent and prone to the self-interference phenomenon. Moreover, the measurement overhead they introduce is O(n^2), where n is the number of nodes.

3.5 Mobility aware
It emphasize on more stable path rather than shortest path all the time and it reduces the probability of link breakage the rate of broadcasting of messages. This metric will also minimize the overhead of broadcasting messages. It has the adaptiveness in topological changes.[14] This can be very efficient at the time of sending the large data where continuous connection among the source and destination is more preferable.

3.6 Energy aware
At the network layer, power efficient routing protocols are designed to select the best path such that the total energy consumed is minimized or the system lifetime is maximized. EAR makes use of different paths and tends to balance the load by optimizing the residual energy.

4. COMPARATIVE STUDY
<table>
<thead>
<tr>
<th>Author/Title</th>
<th>Proposed Work</th>
<th>Drawback observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.J. Glass and L.M. Ni „„The Turn Model for Adaptive Routing” [1]</td>
<td>proposes energy aware routing that uses sub optimal paths to achieve significant gains</td>
<td>Not always result in an efficient routing path.</td>
</tr>
<tr>
<td>Y. Yang, J. Wang, and R. Kravets “, Designing routing metrics for mesh networks</td>
<td>biased back-backup scheme for route discovery</td>
<td>It requires more energy cost towards co-operative forwarding.</td>
</tr>
</tbody>
</table>

5. CONCLUSION

From the above literature study it is clearly observed There are some critical problems in the new research field of normal sensor network as well as underwater acoustic sensor networks. The problems involve system lifetime and system throughput. In this paper have to study the wireless sensor network and also presenting the routing matrices.

6. REFERENCES

[18] DEAR: A Device and Energy Aware Routing protocol for heterogeneous ad hoc networks $ Arun Avudainayagam, Wenjing Lou, and Yuguang Fang Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA Received 17 October 2002; accepted 21 October 2002